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Equilibrium states of two-dimensional turbulence: An experimental study
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Equilibrium states of vortex arrays, excited by electromagnetic forces, are studied experimentally in
thin, stably stratified, fluid layers. Several characteristics (the conservation of the maximum vorticity
and the structure of the final state) are found to be in conflict with statistical theory, while better agree-
ment is obtained with a recent approach in which the final state is controlled by the surviving structures

of the decay phase.

PACS number(s): 47.27.—i

The' problem of determining the equilibrium state of
two-dimensional turbulence has been addressed a long
time ago and is still controversial. The statistical ap-
proach, which was initiated by Onsager [1], has been
widely discussed over the past 20 years [2]. Recently,
this theory was extended to the case of continuous fields
[3]. This approach implies the existence of well defined
equilibrium states, controlled by the global invariants of
the system and thus independent of the precise structure
of the initial flow conditions. If this approach is relevant
to two-dimensional turbulence, the powerful tools of sta-
tistical mechanics may possibly be used for attacking
nonequilibrium situations such as forced turbulence [3].
The issue of ergodicity has been raised by several authors
[4]: In two-dimensional turbulence, because of the ab-
sence of an efficient process for mixing the vorticity
patches and the observed tendency to form robust, long-
lived, coherent structures, it is not clear whether the flow
can be treated as an ergodic system. An alternative ap-
proach was proposed recently [5] (originally for large
population of vortices), suggesting that the end state is
the ultimate stage of a self-similar evolution governing
the decay phase. As the largest structures are formed,
the system eventually ceases to evolve or evolves in a
low-dimensional dynamical space. The two approaches
differ in many respects. In the scaling theory, the final
state is selected by some self-similar process at work in
the decay phase, while in the statistical theory it is select-
ed by a maximum entropy condition. In scaling theory,
the maximum vorticity is conserved and the vorticity
patches occupy only a fraction of the available space, two
characteristics that in general differ from the statistical
theory. There are also other approaches to the problem
of equilibrium, including “selective decay” theory [6],
which assumes that the equilibrium states coincide with
an enstrophy minimum. There is no strong justification
for this hypothesis, except that enstrophy must decrease
with time in a freely evolving system so that if a steady
state is to be reached, it must correspond to some
minimum.

On the experimental side, the situation is somewhat
puzzling: The results obtained in a plasma experiment
[7]—assumed to be isomorphic to a fluid system—tend
to support selective decay theory, while those obtained in
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mercury [8] tend to support statistical theory. In this
Brief Report we examine a different class of initial condi-
tions, characterized by the presence of several structures
in the system. It will appear that in this case, the predic-
tions of some of the various approaches strongly differ
from each other, even on a qualitative level, so that sharp
distinctions can be made.

The situations that we consider are arrays of vortices
confined in square boxes. The system is similar to a pre-
vious experiment [9] (which actually used nonstratified
fluids) and we give here only a brief description of the ex-
perimental setup. The flow is produced in thin layers of
thickness b equal to 6 mm, consisting of two layers of salt
water of different concentrations with the same thickness.
To produce the initial flow, an electric current I is driven
horizontally, from one side of the cell to the other, and
just below the flow, arrays of permanent magnets are
formed. The interaction of the periodic magnetic field
with the electric current produces a system of recirculat-
ing flows whose structure is imposed by the arrangement
of the magnets. In the experiments described here, regu-
lar arrays of four, nine, and sixteen counterrotating vor-
tices and irregular arrays to ten vortices are considered.
The vortex dimensions are 16X 16 mm? and the initial
vorticity profile is roughly Gaussian. The flow is visual-
ized by particles, several tens of micrometers in size,
slightly lighter than the fluid; they are deposited on the
free surface and visualized from above. The images are
sent to a video recorder and further analyzed. To com-
pute the instantaneous velocity, we use a technique al-
ready used in a previous work [9] and based on the calcu-
lation of correlations: the system is discretized into
40X 40 squares and maxima of temporal correlations of
the light intensity diffused by the particles are calculated;
the resulting velocity field is fitted by spline functions.
The calculations of the vorticity field and the stream
function are done in the direct space. The accuracy of
the measurement of the velocity field can be estimated to
a few percent and that of the vorticity to about =10%.
Related quantities, such as the energy, the enstrophy, the
maximum vorticity, and the local divergence, are calcu-
lated.

To obtain an equilibrium state, we first impose a steady
value of I at t = —r, after which we quench it at  =0.
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FIG. 1. Evolution of the vorticity field for a system of four
counterrotating vortices, enclosed in a square box: (a) t =0's, (b)
t=2.3s,(c)t=8.2s,and (d) t =28 s.

During the relaxation process, because of the fraction ex-
erted by the bottom wall on the fluid layer, the total
kinetic energy decreases exponentially, with a time con-
stant of typically 30 s. We typically follow the system
during ten turnover times before most of the energy is
dissipated; the stationarity of the end state is controlled
by inspecting several quantities, such as the flow pattern,
the enstrophy, or the w-¢ plot (where w and ¥ are, re-
spectively, the vorticity and the stream function). The is-
sue of the two dimensionality of the flow is crucial and
we perform several tests to discuss it. In our system,
three dimensionality arises because of three-dimensional
flows present within the fluid layer and the deformation
of the fluid interface. Concerning the interface deforma-
tions, we estimate them as a few percent of the total
height in the decay regime. This is consistent with the
typical values of the Froude number that we work with
(smaller than 0.5). Concerning the three-dimensional

(a)

flows, we measure the horizontal divergence of the veloci-
ty field, which is found to be 5% of the maximum vortici-
ty in all the experiments; this indicates that they are
weak. Additional information is provided by the inspec-
tion of elementary situations, such as the single vortex,
the dipole, the merging two like-sign vortices, and the di-
pole collision, which we compare to two-dimensional cal-
culations. In all cases, we find excellent consistency be-
tween our observations and the theoretical expections.
We thus may consider that our system is essentially two
dimensional.

Figures 1(a)—1(d) show the evolution of the isovorticity
lines for a system of four counterrotating vortices, pro-
duced initially by an electric current of 2 A, imposed dur-
ing a time 7=1 s, in a stepwise stratified layer of 6 mm.
After the current is quenched, two like-sign vortices
merge so as to form, a few seconds later, a central vortex
[Fig. 1(d)]. The merging is asymmetric: During this pro-
cess, the core of one of the two vortices is preserved,
while the other is stretched around it so as to form an an-
nular vorticity layer. The walls themselves generate rib-
bons that mix with the outer layer, without, apparently,
perturbing the core of the flow; such ribbons are responsi-
ble for the slight increase of the mean velocity of the sys-
tem (10% of the maximum value) during the decay phase.
The final state, in this case, is thus an asymmetric annular
structure for which the active zone of the vorticity field
occupies the majority of the box area, but not its totality.
The free decay of a system of nine vortices show a more
complex sequence of mergings: The first event is the
merging of the four vortices located around the central
one. During this process, the central vortex is expelled at
the periphery and at the end we obtain a structure some-
what close to a dipolar one (see Fig. 2). In this case, it is
more evident that the active structure of the final state
occupies only a fraction of the box area, leaving the other
part filled with patches of weak vorticity. Finally, the
disordered configuration with ten vortices also shows that
the decay consists of a succession of mergings and one
clearly obtains, for the final state, a dipolar structure,
which occupies an area less than 30% of that of the box
(see Fig. 3). A similar situation is observed for the
sixteen-vortex system.

An interesting quantity is the maximum vorticity {,,.,,
which, according to ‘“‘scaling theory,” is conserved during

FIG. 2. (a) Initial and (b) final
states for a system including ini-
tially nine counterrotating vor-
tices arranged on a regular lat-
tice.
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the decay phase, while it may decrease for the two other
approaches. The evolution of this quantity (renormalized
by V'E, where E is the total kinetic energy [10]) is shown
in Fig. 4. One finds that {,,,/V'E is constant in all
cases. According to the usual interpretations, and in
agreement with the direct observation of the vorticity
field, one can infer that the core of the strongest vortex is
preserved during the mergings and therefore complete
mixing of the vorticity levels is not achieved during the
decay phase, at least for the available time of observation.
Concerning the end states themselves, the corresponding
®-¥ plots are shown in Fig. 5. We find different situa-
tions: In the four-vortex system, one can tentatively con-
sider that we are close to an equilibrium state, since the
scatter on the plot is fairly small (close to the origin,
there is some scatter, but this is due to the ribbons in-
duced by the walls). In the other cases, this is less clear;
in particular, the case of the initially disordered system
[Fig. 3(c)] is certainly nonstationary [the fact that the
state of Fig. 3(c) is nonstationary is evident].

These observations are in good correspondence with
scaling theory even when the initial state is not a large
population of vortices. Some characteristics are the
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FIG. 4. Evolution of the renormalized maximum vorticity
for four different cases: A, four vortices; /\, nine vortices; @,
ten vortices, randomly spaced; X, sixteen vortices. The expres-
sion of £y is &max (0N E(0)/E)' 2.
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FIG. 3. (a) Initial and (b) final
states for a system including ini-
tially ten counterrotating vor-
tices randomly spaced.
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FIG. 5. Scatter plots for the end states, obtained after 28 s, in
the cases corresponding to Figs. 1-3: (a) four vortices, (b) nine
vortices, (c) ten vortices, randomly spaced.



51 BRIEF REPORTS

same: the conservation of the vorticity extremum of the
strongest structures and the decrease of the area occupied
by active vorticity patches, two features that are present
in both this approach and our experiments. The fact the
final state of flow is essentially controlled by the surviving
structures is in good agreement with our observations;
this is particularly clear for the disordered system. In
contrast, there are significant differences between our re-
sults and the other theories. To discuss the relation with
statistical theory, one should decompose the initial veloc-
ity field into a set of N patches of amplitude a; and —a; (i
varying from 1 to N). We consider here a simpler ap-
proach by introducing only two vorticity levels +a and
—a, respectively, for defining the initial state. With this
simplification, the equilibrium state is determined by the
relation

w=a tanh(—a+LaV¥V) (1)

in which a and B are constants. This equation has been
computed for some (positive) values of these constants
[11]. One finds, in the physical space, a structure consist-
ing of a central, symmetric vortex, surrounded by a vor-
tex layer, and occupying the totality of the available area.
One could say that expression (1) is not in conflict with
the curve of Fig. 3(a), corresponding to the four-vortex
system; the corresponding structure, in the physical
space, is not so distinct from the expected one (the main
difference is the asymmetry observed in the experiment).
Actually, one can show that there is an incompatibility
between the fact that o is roughly a linear function of ¥
and the conservation of the maximum of the vorticity. In
the case of larger vortex populations, the structure that is
obtained—a dipole occupying a reduced fraction of the
box area—is clearly different from the predictions. The
only way of reconciling theory and experiment in this
case would be to assume that the dipole will further
evolve towards a steady state described by (1). Although
we have no direct experimental evidence that this is not
the case, one can say that this is improbable. There is no
mechanism, in the bulk, that would destroy the dipolar
structure; concerning the walls, we have checked that
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they can be roughly assimilated to mirrors, so that one
can hardly see any mechanism that would reorganize the
vortex couple into an annular symmetric structure. By
studying the case of a dipole enclosed in a box, we have
observed first a propagation and then a separation of the
two vortices as the dipole reaches a wall and no tendency
to form an annular structure. Therefore there are strong
indications that the maximum entropy state is unlikely to
be reached and that statistical theory does not apply for
this case. Similar conclusions can be drawn concerning
the selective decay theory. According to this theory, for
the equilibrium state, the system selects the gravest mode
compatible with the boundary conditions; this would give
a symmetric annular structure in our case and not an iso-
lated dipole.

We therefore are led to conclude that, for the situa-
tions that we have investigated, the observed final states
of flow display characteristics in conflict with both sta-
tistical and selective decay theories and are in better
agreement with the approach of Ref. [S], originally pro-
posed for large populations of vortices. The relevance of
scaling theory, which has already been shown in numeri-
cal experiments, turns out to apply also to some real
flows. The picture that now seems to emerge, on the ex-
perimental side, is that when many structures are initially
present in the system, vortices merge at random and we
end up with a dipole that fully controls the final state; the
system does not reach a maximum entropy state in this
case. Now, when the vorticity patches are initially or-
ganized into a single structure, the situation is less clear
and somewhat puzzling since contradictory results have
been reported for this situation. Finally, the situation of
the experiment is not so far from that found in the
numerics [12].
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FIG. 1. Evolution of the vorticity field for a system of four
counterrotating vortices, enclosed in a square box: (a) t =05, (b)
t=23s,(c)t=8.2s,and (d) t =28 s.



FIG. 2. (a) Initial and (b) final
states for a system including ini-
tially nine counterrotating vor-
tices arranged on a regular lat-
tice.



FIG. 3. (a) Initial and (b) final
states for a system including ini-
tially ten counterrotating vor-
tices randomly spaced.
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